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Decimation Transformations in Lattice Systems 
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Decimation renormalization transformations are investigated for systems 
of continuous spins. The usual arguments against decimation can be avoided 
by considering products of decimation and spin scaling transformations. 
With the simple local types of spin scaling normally used for continuous 
spins, even these product transformations will have no fixed points for 
lattice dimension greater than one. A Gaussian fixed point for one- 
dimensional models with short range (but not only nearest neighbor) inter- 
actions is exhibited. A series of scaling transformations of increasing 
generality is investigated. It is found that a product of a nonlocal spin 
scaling transformation and a decimation will produce the usual fixed points, 
but that this type of product transformation is effectively much more a 
"block"-type transformation than a pure decimation. 
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1, I N T R O D U C T I O N  

Several authors (1-6) have investigated the critical behavior  o f  Ising spin 
systems using the decimation type renormalizat ion transformations.  All o f  
these authors note that  these t ransformations can have a fixed point  on  the 
critical surface only if  the exponent ~ satisfies d - 2 + ~ = 0, that  is, only if 
the order parameter  correlat ion function is not  zero at large distances. One- 
dimensional Ising models have, in a sense, a critical point  at T = 0 which 
satisfies the above condition, and the properties o f  several o f  these models 
have been rederived (5) using the decimation t ransformat ion with no 
approximations.  Two-dimensional  Ising systems have been investigated (1'2) 
using approximate  decimation transformations.  The approximate  trans- 
format ions show fixed points and good  numerical  results are obtained for  
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some exponents even though these models do not satisfy the d - 2 + ~ = 0 
condition. Since the fixed points must be produced by the approximations, 
it is not clear why these methods yield good numerical results. 

The usual argument, that decimation transformations and critical fixed- 
point behavior are incompatible when d - 2 + ~ r 0, fails if the decimation 
is combined with some type of spin scaling transformation and provided the 
spin scaling factor is chosen properly. Transformations of this kind have been 
used, (a,6~ with approximations, to examine the critical behavior of two- 
dimensional Ising systems. Again, the approximate transformations show 
fixed points and give good numerical values for the critical exponents. The 
approximate transformations, however, have fixed points for a range of values 
of  the spin scaling parameter, whereas the exact transformation can have a 
critical fixed point only for a particular choice of  the spin scaling parameter. 
It is again not clear to what extent the approximate results are characteristic 
of  the exact transformations. In this case, however, improvement (3~ in the 
approximations narrow the allowed range of  spin scaling factors and suggest 
that the correct factor would be determined by the exact transformation. 

There are no exact calculations using these transformations on models of 
more than one dimension. This paper considers decimation with spin scaling 
applied to continuous spin systems and, in particular, the question of whether 
the exact transformations can produce the fixed points (7,8~ which occur so 
naturally in the block-type transformations. The answer to this question is a 
qualified no. In one dimension there are Gaussian fixed points, but in higher 
dimensions, if the spin scaling procedures used are the "usua l"  ones for 
continuous spin models, there are no fixed points on the critical surface. 
Other types of spin scaling are considered arid difficulties with them are noted. 
All of the transformations considered are of the type usually termed linear, 
that is, correlations of a given order are related by the transformations only 
to correlations of the same order. 

2. D E C I M A T I O N  A N D  SPIN R E S C A L I N G  

The decimation type of transformation is always effected by dividing a 
lattice into several sublattices and then integrating over the degrees of  free- 
dom associated with some of the sublattices. There are many possible choices 
of  the original lattice and for the decomposition into sublattices. The choices 
made here ~/re for simplicity. The conclusions do not appear to depend on 
these particular choices, though this is not proven here. 

Consider a d-dimensional simple cubic lattice L of  unit spacing with 
lattice points given by vectors n = ( n l ,  n2 . . . . .  na)  with integer components. 
Let x,, be continuous variables associated with each lattice point n. The 
Hamiltonian ~ [ x ]  is a function of all the xn for which n lies in the cube, 
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containing N a lattice points, specified by - N / 2  <<, n, < N/2 for 1 <~ i ~< d. 
This lattice can be subdivided into 2 a simple cubic lattices, each of two-unit 
spacing, by allowing each component n~ to range over either even or odd 
integers. Let Le be the set of lattice points whose every component is even and 
let Lc be all other lattice points of L (L = L~ u Lc). The decimation trans- 
formation will consist of integrating over all x .  associated with Lc and re- 
labeling the remaining variables (those of Le) by the substitution x~ = x./2 
so that they are associated with a lattice of unit spacing. The new Hamiltonian 
will have N '  = N2-a  variables. We indicate the transformation by D and 
write it, symbolically, as 

D: exp(3f'~,[x']) - [ e x p ( ~ [ x ] )  I--[ dx. (1) 
J n  �9 . - * n / 2  n ~ L  e 

The transformation leaves the partition function invariant; Z(~4r 
Z(~N). The two-point correlation functions F(n, Y f ) =  <x=xm+,)ae and 
F(n, ~ ' )  = <x~x'~ +.)ae, are related by 

D: P(n, Yf') = P(2n, YF), n e L (2) 

if Yf is a fixed-point Hamiltonian, then ~ = ~,o, = o~* and (2) becomes 
P(n, Yf*) = P(2n, ~ * ) ,  which is inconsistent (3> with the usually assumed 
asymptotic form 

r ~c LnI-~+~-" (3) 

for large n unless - d  + 2 - ~ = 0. This condition is not satisfied for most 
systems of interest and therefore the decimation transformation has no fixed 
point on their critical surface. 

The above argument can be circumvented by combining the decimation 
transformation with a transformation (8> S which rescales all variables x . .  
Perhaps the simplest example is the transformation S~ which just multiplies 
each x .  by a factor/3, 

$1 : exp(3tt~ x']) = [ I--[ 3(x~ - fix.) exp(~f'u [x]) I-I dx, (4) 
d n~L B~L 

It is straightforward that under S~, Z ( ~ j )  = Z(3f'N) and 

s~: r(n, ~ ' )  =/3~r(n, ~ ) ,  n ~ L (5) 

Consider now the product transformation S~D. It will leave the partition 
function invariant. The correlation functions transform as (2) followed by (5): 

S~D: F(n, ~ ' )  = /32F(2n, ~ ) ,  n E L (6) 

This transformation is consistent with a fixed point and the asymptotic form 
(3) provided/ t  s = 2 a-2+n (/~ is 22a times the usual spin scaling factor(V'8)). 
Now, however, another difficulty appears. Since (6) is valid for n = 0, it 
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requires that at a fixed point W*, F(0, W*) = fl2F(0, W*). But P(0, W*) # 0 
(it is the average of a positive quantity); therefore f12 = 1, which again re- 
quires d - 2 + ~ = 0 if there is to be a fixed point on the critical surface. 

The difficulty in the above transformation is that it scales P at n = 0 by 
the same factor as for large n. This is not the case with the spin scaling 
transformation ~8~ $2 given by 

$2: exp(~N'[x']) = ~1~ exp[-�89 -/3x.)21 

x exp(Jt~N[x]) I--I dxn (7) 
IIEL 

The partition function is invariant under $2 and the correlation function 
transforms as ~8~ 

&: r(n, ~ ' )  =/32r(n, ~ )  + ~-1~.,o (8) 
and under transformation SzD as 

S2D: r(n, W') =/~=r(2n, ~ )  + ~-la.,o (9) 
The large-n behavior of  P again requires the/3 = 2 d-2+~ if there is to be a 
fixed point. But for n = 0 and ~ = ~ ' =  Yf*, (9) yields P(0, ~f f*)=  
[a(1 -/32)] -1. This equation cannot be satisfied. P(0, Yf*) is positive and $2 
can be defined only for positive ~, so that 5 2 must be less than 1. But fi2 = 
2 e-2+" is greater than 1 because the correlations vanish as n--> m at the 
usual critical point. 

Neither of transformations S1D or S2D will have fixed points corre- 
sponding to those of the transformations usually used with continuous 
systems. <v'8~ The one- and two-dimensional Gaussian models are excepted 
from this conclusion. For these models P(n, 3el) -+ oo as ~ approaches the 
critical surface, so the above arguments are inappropriate. Before considering 
the possibility of more general scaling transformations S, it is worth consider- 
ing the Gaussian model in more detail. 

3. G A U S S I A N  M O D E L S  

The simplest fixed points, under the usual transformations, for con- 
tinuous systems are the Gaussian fixed points. The above arguments indicate 
that even these cannot occur, at least when the correlation functions are well 
defined, for the SD transformations. To examine this more closely, consider 
the space of  Hamiltonians of  the form 

= - � 8 9  J(n)xmx.+.  (10) 
1II1,o 

where the interactions d(n) are such that dgg[x] ~< 0 for all values of the x . .  
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Assuming the usual periodic boundary conditions, these Hamiltonians are 
diagonalized by the transformations 

2 ~  

xq = - m 2 ~ m 2  [exp(--iq.n)]xn, xn = N -d ~,o [exp(iq.n)]xq (11) 

where each component of q varies from 0 to 2~r in steps of 27r/N. The Hamil- 
tonian ~ takes the form 

2~z 

= - � 8 9  -a ~ of(q)xqx_,, of(q) = ~, [exp(-iq-n)lJ(n) (12) 
0 n 

and the correlations are 

(xqxq,) = 3q +,,,oNa/of (q) (13) 

The Hamiltonians of interest are those for which of(q) > 0, q # 0, and 
of(0) /> 0. The critical surface is defined b y / ( 0 )  -= r0 = 0. It is also assumed, 
as usual, that for small q, of(q) ~- ro + zq 2 + .... The correlation function 
P(n, J)  is related to J (q )  by 

2 ~  

F(n, J)  = N -a ~ [exp(iq-n)]/of(q) (14) 
0 

of-  l(q) = ~ [exp(- iq .n)]P(n,J)  (15) 
-Nl2~nt<N]2 

as long as ro # 0 so that of-l(q) is nonsingular. The sum in (14) becomes an 
integral, as n ~ 0% which is finite for d 1> 3 but not for d < 2 as ro --~ 0. 

It is straightforward to check that the transformations S1D and S2D 
transform Gaussian Hamiltonians into Gaussian Hamiltonians. The trans- 
formation of the Hamiltonian, that is, of(q), is most easily found from the 
transformation of F(n, J). Consider the transformation S1D given by (6). 
Putting F(q, J)  = 1/of(q) and writing (14) for F(n, J ' )  gives 

r(n, J ' )  = \-~-/ o [exp(iq.n)]r(q, J ' )  (16) 

where in the sum, each component of q varies in steps of 47r/N, since after the 
SD transformation the system contains (N/2) a lattice sites. Then, using (14) 
for I'(2n, J) gives 

2 ~  4 ~  

r(2n, J) = N -~ ~ [exp(iq.2n)]r(q, J) = g - a  ~ [exp(iq'.n)]r(q'/2, J) 
0 0 

In the second sum the components of q' vary in steps of 4~r/N. Let 2~rK = 
2~r(K1, K2 ..... Ka), K~ = 0, 1. The range of the second sum can be reduced to 
0-27r by adding all possible 27rK to q' and since n-K = 1 ; we have 

r(2n, y) = N -d ~ [exp(iq.n)]r q + ,~Ky (17) 
q = ~ 0 K ~ = 0  
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Now (16) and (17) with (6) imply 

and iterating this equation p times yields 

r(q, j , , ,)  = ~2"2-a~ - 2,- 1~,<~, 1- r (  q +2"2~K' J/-XP (19) 

where the periodicity of F(q, J)  has been used to change the limits of  summa- 
tion from 0 ~< K~ < 2 p to - 2  v-1 ~< /s < 2 p-1. Off the critical surface 
(ro # 0) I ~ is nonsingular and the sum (19) approaches an integral as p ~ oo. 
A family of high-temperature fixed points, corresponding to noninteracting 
spins, is reached for the choice/3 = 1 and is given by 

1 1 ~ dK 
j , ( q )  - F(q, J*)  --- ~ ~  a_ ,  J ( K )  

On the critical surface (to = 0), 17(q, J )  has a 1/zq ~ singularity as q ~ 0. 
The integral (in the thermodynamic limit) in (14) is divergent at small q for 
one- or two-dimensional systems and therefore F(n, J)  is infinite. J ( q )  [and 
F(q, J)] exists, however, and still transforms according to (18) since neither 
the decimation nor the scaling transformation depends on Y(n) in a singular 
way near the critical surface. The transformation law (18) can also be derived 
without reference to F(n,J)  by introducing separate coordinates xq,~, 
c, = 1,..., 2 a, for each sublattice and then integrating over all sublattices but 
one by a series of completing the square type arguments. This derivation, 
though simple in concept, is tedious in execution and will not be given. 

For ro = 0, F(q, J )  can be written F(q, J )  = i/zq 2 + F(q), where F(q) 
is not singular. If  this is put in (19), the sum over the nonsingular part 
approaches an integral, so (19) becomes, for large p, 

I'(q, y(p~) = z-~132p2,2-a~r ~ [q + 2zrK] -2 
- 2 -  <Kt<2P- 

f: +/32"(2z,)-a F(K) dK (20) 

For d = 1 the sum in (20) is convergent and the first term will approach a 
nontrivial limit for large p if/32 = 1/2. With this/3 the second term vanishes 
for large p so 

1 1 
r(q, j , )  _- z K=-~ Iq + 2~KI 2 

The sum of this series is (9~ [2 sin(q/2)] -2. The fixed points for d = 1 are 
therefore 

J * ( q )  = 4z sin2(q/2) (21) 
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which means the fixed-point interactions J*(n) are nearest neighbor and of 
strength z. So, in one dimension, every Hamiltonian on the critical surface 
approaches a nearest neighbor fixed point of the same z under iteration of the 
SI D transformation. 

For  d = 2, however, (20) will not yield a nontrivial fixed point. The sum 
in (20) diverges (slowly) as p ~ 0% so no finite limit is approached if/3 i> 1. 
But if/~ < 1,/32p -+ 0 so rapidly that the limit of (20) is zero. Therefore, the 
transformation S,D has Gaussian fixed points, of the usual kind, for d = 1 
but none for d >/ 2. The same is true, by similar arguments, for S2D. General- 
izations of these transformations that may show fixed points are considered 
next. 

4. O T H E R  S C A L I N G  T R A N S F O R M A T I O N S  

A natural generalization of the transformations $1 and $2 is 

exp(J4~u'[x']) = f 1-~ S(Xn' -- flXn) exp(~N[x]) I-~ dx, (22) Sa" 
n ~ L  n ~ L  

where s(y) is an even function and normalized so f s(y) dy = 1. It is easy to 
show that the partition function is invariant under Sa and that the correlation 
function still transforms as (8) with ~-1 ___ fy2s(y ) dy. If  s(y) > 0, then 
c~ > 0 and the argument of Section 2 shows there can be no fixed point of  the 
transformations SaD. If  S(Y) is not everywhere positive, then it is possible 
that c~ < 0, voiding the argument of Section 2. Then, however, it is not clear 
from (22) under what conditions the transformed Hamiltonian ~ ' [x ' ]  will 
be real. This is reminiscent of a similar difficulty known (1~ to occur for 
certain linear renormalization transformations of discrete spin systems. 
Another difficulty with Sa is that, except for special choices of  s(y), it does 
not transform Gaussian Hamiltonians into Gaussian Hamiltonians and 
hence the existence of a Gaussian fixed point is difficult to investigate. 

The scaling transformations $3 are local, in the sense that the kernel of  
the integral transform (22) is a product of  factors each of  which couples each 
new variable to the old one at only the same lattice site. A nonlocal generaliza- 
t ion of (22) is 

$4: exp(gf~N[x'])=f~s(x~'-~(m)X~+m) 

x exp(o~'N[x]) I ~  dxn (23) 
n s L  

where the new variable x~ is related to a weighted average of the xn+= at 
neighboring sites. The choice /3(m) = 3=,0 reduces (23) to (22). If again 
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f s(y) dy = 1 and s is even, then the partition function is invariant under (23) 
and the correlation function transforms as 

r(n, ~ ' )  = ~ B(k)i3(I)r(n + 1 - k, ~ )  + ~n,0~ -1 
k, l  

This scaling transformation can be combined with the decimation as either 
S~D or DS4, which are not the same. These transformations have, however, 
essentially the same behavior under repeated iterations, so we shall consider 
only DS4. The correlation functions transform as 

DS,: F(n, ~ ' )  = ~/~(2k)/3(21)P(2n + 21 - 2k, Jr + 8.,0c~ -1 
k,1 

(24) 

Now, in contrast to (9), the new correlation function at n = 0 is not related 
to the old one at only n = 0. Thus the argument forbidding a fixed point fails 
even for ~ > 0. Furthermore, it seems reasonable to expect DS4 to be similar 
to the block type of  transformation, ~7,e~ since the scaling transformation S~ 
"smears"  the spin over some distance determined by the range of  fi(m) and 
the decimation removes some of these smeared spins. Also, with an appro- 
priate choice of/3(m), (24) is very similar to the transformation of the correla- 
tions under the block-type transformations. Since the block-type transforma- 
tions have fixed points, it might be expected that DS4 does also. This can be 
explicitly demonstrated for the Gaussian fixed points by choosing, in (23), 
s(y) = (a/27r)lI2e-~. With this choice (23) will transform a Gaussian 
Hamiltonian into a Gaussian Hamiltonian and the transformation of the 
Hamiltonians can be found from (15) and (23). An argument similar to that 
leading to (18) yields 

Suppose B(rn) is chosen to average over a cube of  unit side length, for 
example, /3(m)= f3 for all m with components m~ = 0, 1 and /3(m)= 0 
otherwise. Then 

1 d 

/3(q) = ~ [exp(-iq.m)]/3(m) =/3 ~ exp(- iq.m) = ~ [1 + exp(-iqj)] 
lga mt=O j = l  

and 

sin2 qj 
I/3(q) l 2 = sin2(qj/2) 

y = l  

With this choice of/3(m), (25) is identical to the block transformation used by 
Bell and Wilson (a~ and shown by them to have Gaussian fixed points. 
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In  conclusion,  it  appears  that ,  for  cont inuous  spins, dec imat ion  com- 
b ined  with local  spin rescaling o f  the  usual  types  will p roduce  fixed po in ts  
only  for  one-d imens ional  lattices. Dec ima t ion  with non loca l  spin rescal ing 
m a y  p roduce  fixed poin ts  in any dimension,  bu t  such t r ans fo rmat ions  are,  at  
least  in some simple cases, equivalent  to the b lock- type  t rans format ions .  
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